Practical management of Fusarium head blight (head scab)

Dr. Kelsey Andersen Onofre
Assistant Professor, Wheat and Forage Pathologist
Kansas State University
Email: andersenk@ksu.edu, m: 785-410-2426

U.S. Wheat & Barley Scab Initiative

13.3 million bushels of wheat lost to FHB in Kansas alone in 2021

- Stripe rust
- Fusarium head blight
- Wheat streak mosaic virus
- Tan spot
- Bunt and loose smut
- Leaf rust
- Barley yellow dwarf virus
- Septoria complex
- Bacterial leaf complex
- Soilborne and spindle streak
- Stem rust

Yield Loss (%)
Fusarium head blight (aka Scab, FHB)

- Caused by the fungal pathogen *F. graminearum* (and friends: *F. culmorum, F. avenaceum, others*)
- Survives in wheat, corn, and soybean residue
- Disease results in both *yield and quality loss*
 - Lightweight, chalky kernels
 - Decreased yield and test weight
 - May negatively impact wheat protein quality
 - Several pathogens are produced

When it comes to scab we need to manage both *grain damage* and *mycotoxin accumulation*

- **Deoxynivalenol (DON) aka VOMITOXON**
- Acetyldeoxynivalenol (3-ADON, 15-ADON)
- Nivalenol (NIV)

 - These secondary metabolites increases infection efficiency

 - Harmful to humans and livestock and regulated (1 ppm for human consumption)
 - Vomiting
 - Feed refusal
 - Neurological problems

 - Contaminated grain will be blended or discounted
So, how do we manage scab?

Pre-planting
- Crop Rotation
- Tillage
- Select variety with highest available level of resistance – may reduce FHB and DON by up to 50%

Within-season
- Fungicide applications
- Timing is critical

Harvest
- Harvest timing and proper grain storage can limit DON accumulation
- Combine settings
What fungicide products do we use in wheat?

<table>
<thead>
<tr>
<th>QoI</th>
<th>DMI</th>
<th>SDHI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quinone outside inhibitors</td>
<td>Demethylation inhibitors</td>
<td>Succinate dehydrogenase inhibitors</td>
</tr>
<tr>
<td>FRAC CODE 11</td>
<td>FRAC CODE 3</td>
<td>FRAC CODE 7</td>
</tr>
<tr>
<td>Example: azoxystrobin</td>
<td>Example: tebuconazole</td>
<td>Example: fluopyram</td>
</tr>
</tbody>
</table>

What we know about managing FHB with fungicides?

- DMI fungicides (triazole group) most effective against FHB and DON, although there are differences between individual products.
- DMI single application reduces FHB and DON 40-50% (Paul et al. 2008).
- QoI fungicides are not recommended and can result in increased levels of DON (Paul et al. 2018).
- Moderately resistant cultivar + DMI fungicide can reduce FHB and DON by >70% (Willyerd et al. 2012).
- There have been several reports of fungicide resistance to DMI group fungicides in recent years (Anderson et al. 2020, Spolti et al. 2014).
- The addition fungicides within the SDHI group are promising for FHB management.
Key products labeled and effective for FHB control

<table>
<thead>
<tr>
<th>Product</th>
<th>Rate (fl oz/A)</th>
<th>Pre-harvest interval</th>
<th>GROUP NAME</th>
<th>FRAC CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prosaro</td>
<td>6.5-8.2</td>
<td>30 Days</td>
<td>DMI</td>
<td>FRAC 3</td>
</tr>
<tr>
<td>Proline</td>
<td>5-5.7</td>
<td>30 Days</td>
<td>DMI</td>
<td>FRAC 3</td>
</tr>
<tr>
<td>Caramba</td>
<td>10-17</td>
<td>30 Days</td>
<td>DMI</td>
<td>FRAC 3</td>
</tr>
<tr>
<td>Miravis Ace</td>
<td>13.7</td>
<td>Feekes 10.5.4</td>
<td>DMI + SDHI</td>
<td>FRAC 3 + FRAC 7</td>
</tr>
</tbody>
</table>

- New products to be labeled: Sphaerex (metconazole and prothioconazole) and Prosaro Pro (Tebuconazole + Prothioconazole + Fluopyram (Group 7))

Revisiting fungicide timing for scab control

- Fusarium head blight applications should be made at early flowering Feekes 10.5.1 for maximum efficacy.
- Previous work found > 30% increased efficacy of DMIs when applied at early anthesis compared to heading

Miravis Ace- evaluating the efficacy and timing of a new (ish) product

- Labeled for early (Feekes 10.3) applications

- Propiconazole (11.4%) + Pydiflumetofen (13.7%)

- DMI + SDHI products

Get a Head Start on Head Scab

Miravis® Ace fungicide takes the stress out of wheat disease control with the power to control head scab as early as 50% head emergence.

USWBSI Multi-state Coordinated Project

<table>
<thead>
<tr>
<th>Treatment Program</th>
<th>Rate (fl oz/A)</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nontreated (Check)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Prosaro</td>
<td>6.5</td>
<td>Feekes 10.5.1</td>
</tr>
<tr>
<td>Miravis Ace</td>
<td>13.7</td>
<td>Feekes 10.3-5</td>
</tr>
<tr>
<td>Miravis Ace</td>
<td>13.7</td>
<td>Feekes 10.5.1</td>
</tr>
<tr>
<td>Miravis Ace fb Tebuconazole</td>
<td>13.6/4.0</td>
<td>Feekes 10.5.1/4-6 DAA</td>
</tr>
</tbody>
</table>
Results across 125 environments, 2018-2021

2018-2021: 125 ENV with IND > 2 or DON > 1ppm, summary prepared by Wanderson Moraes, OSU

Comments on fungicide timing for FHB

- Pre-anthesis treatments are effective at reducing FHB and DON, but are less effective than anthesis applications (particularly for DON control).

- Pre-anthesis applications still provide improved control compared to nontreated check, which may be important when perfect timing cannot be achieved

- Two-treatments programs - an anthesis application of Miravis Ace followed by Folicur 4-6 days later led to highest levels of DON and FHB control

- Combining an anthesis application with genetic resistance results in lower FHB and DON than resistance or fungicide application alone.

Kansas State University
Scab weather-based risk is published on wheatscab.psu.edu

Acknowledgements – USWBSI Management Coordinated Project

Jane Marian Luis (OSU), Sin Joe Ng (OSU), Gary Bergstrom (Cornell), Kaitlyn Bissonnette (U Missouri), Kira Bowen (Auburn), Carl Bradley (U Kentucky), Emmanuel Byamukama (SDSU), Martin Chilvers (MSU), Alyssa Collins (PSU), Christina Cowger (NCSU/USDA-ARS), Heather Darby (U. Vermont), Erick DeWolf (KSU), Ruth Dill Macky (U Minnesota), Paul Esker (PSU), Andrew Friskop (NDSU), Nathan Kleczewski (U Illinois), Alyssa Koehler (U Delaware), Laurence Madden (OSU), Juliet Marshall (U Idaho), Hillary Mehl (Virginia Tech), Wanderson Moraes (OSU), Martin Negelkirk (MSU), Nidhi Rawat (U Maryland), Damon Smith (UW-Madison), Darcy Telenko (Purdue), Stephen Wegulo (U Nebraska-Lincoln), and Heather Young-Kelly (U Tennessee)