

Soil Testing 101

Sandra L. Wick

K-State Research and Extension Post Rock District Crop Production Agent

Crop Nutrient Management Meeting

January 22, 2024

Smith Center

Why soil sampling and testing?

Determine how much fertilizer to apply ?

Determine how much nutrient is available from the soil?

Why soil sampling and testing?

- Estimate probability of nutrient response.
- Determine the amount of plant available NO₃-N.
- Identify fertility trends.
- Estimate long-term nutrient sufficiency.
- Estimate long-term average nutrient rates.
- Diagnosing problems / problem solving.

Probability of Fertilizer Response

P Test Level, ppm	Probability of Response
<5	85-100%
6-12	60-85%
13-20	30-60%
20-30	10-30%
>30	0-10%

Potential limitations

► Variability in test results.

Time and work to take samples.

➤Time to get results back from lab.

>What tests are needed?

Overview

Proper soil sampling

>Taking soil samples

Proper sampling depths

Proper soil sampling

Consistency in depth of sample.

> Appropriate number of subsamples.

Proper care of collected samples.

>Attention to details.

Basic tools

➢Soil probe

➢Bucket

Considerations

- Recommended sampling depth:
 0-6 inches = pH, P, K, Zn, Fe, B.
 0-24 inches = Nitrate, Cl, S.
- >Where in the field?

≻When?

Types of soil sampling: WHERE in the field

- Simple random good in homogeneous fields.
- Systematic follow some pattern to cover different areas.
- Stratified by management zones.

➢Composite − mixing all sample units.

WHEN to Take Samples

- Sampling can take place during any period of the year.
- However, it is best to sample a field at about the same time of year. Be consistent.
- Wait a minimum of thirty days to sample after applications of fertilizer, lime, or sulfur.

WHEN to Take Samples for N, S and Cl

➢ For corn and sorghum, late winter or early spring is ideal.

For wheat, before planting in the fall.

Only reason to measure N before soybeans is for required environmental monitoring.

Number of Cores and Acres per Sample

- >15-20 subsamples per sample submitted to laboratory.
- ➤A smaller number can introduce variability into the results from different sampling years.
- There is no rule for the number of acres to include in a single sample. Depends on the local situation. A treatable area of 5-20 acres is ideal.

Very small sampling areas, such as residential landscape plants and some small gardens may use fewer cores per sample.

How often should I sample?

Every 2-4 years or every rotation.

Every year to develop history.

How to prepare samples for shipment to the lab

- Ideally hermetic bags avoiding potential contamination.
- Preferably should not be dried before submitting.
- ➢Precautions:
 - Do not apply any heat
 - Protect from contamination
 - ➢No microwaves

NOT Useful soil tests

There is no value in running tests that have no calibration-interpretation for the region.
Not useful in Kansas:

Bray P-2 Copper Manganese Magnesium Cation Percentage of CEC

Useful soil tests

- ➢ Profile Nitrate-N
- ➢ Bray P-1 Extractable P
- ➢Olsen Extractable P
- ➤Mehlich III Extractable P
- ≻Exchangeable K
- DTPA Extractable Zn
- ≻Chloride
- ≻Soil pH
- Lime Requirement / Buffer pH
- ➢Soil Organic Matter

Knowledge ^{for}Life

K·**STATE Research and Extension**

Soil Tes

KSU Soil Testing Laboratory 2308 Throckmorton Plant Sciences Center 1712 Claflin Road Manhattan, KS 66506-5503

Soil Test Report	Billing Account #: 30	Sample Inform	Sample Information:		
Prenared For:	Send Conv To:	Sample ID: Gas	Sample ID: Gasper 1		
Sandra Wick	Senu Copy 10.				
		Order Number:	5143		
Post Rock Ext Dist - Mitchell		Lab Number:	002687		
115 S. Hersey					
Beloit, KS 67420		Received:	10/20/2016		
		Reported:	10/24/2016		
swick@ksu.edu		County:			
-		(where sample v	(where sample was taken)		

Results

Analysis	Value Found	Analysis	Value Found	
Soil pH (1:1, soil:water)	6.3	Buffer pH	6.4	
Organic Matter (LOI), %	2.4 %	Nitrate (NO3) surface or 1st sample	19	ppm
Phosphorus (P) Mehlich-3	36 ppm	Potassium (K)	500	ppm
Zinc (Zn) DTPA Extraction	0.5 ppm			

Wheat (Target pH of 6.0) Yield Goal: 55.0 bushels / Acre

Nutrient Gra	ph					
Nutrient	V	ery Low L	ow Me	edium Opt	timum Ab	ove Opt Very High
pН	6.3	4.7	5.5	6.0	7.0	8.5
Р	36	7	14	20	40	100
К	500	41	81	130	161	300
Zn	0.5	0.3	0.6	1.0	2.0	4.0
Lime ECC	Nitrogen, N	Phosphorus, P2	O5 Potassium,	K2O Zine Z	Zn Sulfur S	Boron B Chloride Cl
All Nutrient Uni	its in lbs / acre	Su	uff	Suff		
0	40	0)	0 0)	

Comments:

KSU Soil test interpretations and recommendations

Soil Test Interpretations and Fertilizer Recommendations in Kansas

Summary

➤Soil samples should be representative of the field.

Recommendations were developed based on calibrations for specific soil depths. Sampling depth is important.

➤Take lots of cores.

Profile nitrogen can be a source of nitrogen for the following crop as well.

► Yield goal is a key factor for current

recommendations, be realistic about yield potential.

Recommended sampling depths:
 0-6 inches = pH, P, K, Zn, Fe, B.
 0-24 inches = Nitrate, Cl, S.

Sampling technique presents the greatest chance for errors in results.

Questions?

Sandra L. Wick -Post Rock Extension District -Crop Production Agent -swick@ksu.edu -785-282-6823

Post Rock District